
AD-A133 493 COMPUTER-AIDED STRUCTURAL ENGINEERING (CASE) PROJECT i/i
REFERENCE MANUAL: CO--(U) ARMY ENGINEER WATERWAYS
EXPERIMENT STATION VICKSBURG MS J A BREWER ET AL

UNCLASSIFIED SEP 83 kJES-TR-K-83-3 F/G 9/2 N

EmmhEmhEmhiE
smEEmhEEEmhhh
smEohhohohhoh
EhEEohhohmhshE

- -: - : -I1.05 J4116

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

'-,I - :, : - • . . , . . : . , - - - . - ,. - . .
-. :-.,. -.-- i .,--CI, a,,u -,....-a=ua, ,, ,.. ,,L-'., - -: .,. ,'.

COMPUTER-AIDED STRUCTURAL
ENGINEERING (CASE) PROJECT,

TECHNICAL REPORT K-83-3

REFERENCE MANUAL: COMPUTER
GRAPHICS PROGRAM FOR GENERATION
OF ENGINEERING GEOMETRY (SKETCH)

by

John A. Brewer Ill, Jeffrey N. Jortner
Warren N. Waggenspack, Jr.

Computer Graphics Research & Applications Laboratory
Mechanical Engineering Department

Louisiana State University, Baton Rouge, La. 70803

September 1983

Final Report

Approved For Public Release: Distribution Unlimited

SDT I

OCT 12 1983

H .7A

Prepared for Office, Chief of Engineers, U. S. Army
LQ Washington, D. C. 20314

Monitored by Automatic Data Processing Center
U. S. Army Engineer Waterways Experiment Station

cP. 0. Box 631, Vicksburg, Miss. 39180

F:0
.4 ,.. 3.......... io 12 tGl

.

Destroy this report when no longer needed. Do not
return it to the originator.ii

The findings in this report are not to be construed as an
official Department of the Army position unless so ',

designated by other authorized documents.

The contents of this report are not to be used for
advertising, publication, or promotional purposes.
Citation of trade names does not constitute an
official endorsement or approval of the use of such

commercial products.

The covers of U S. Army Engineer Waterways Experiment Station
(WES) engineering and scientific reports have been redesigned. Each
WES Laboratory and support organization will have its own distinctive
color imprinted on white coverstock.This standardizes WES publica-
tions and enhances their professional appearance.

4.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Does Ent.r.d)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

Technical Report K-83-3 4"AI33 V
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

REFERENCE MANUAL: COMPUTER GRAPHICS PROGRAM FOR Final report

GENERATION OF ENGINEERING GEOMETRY (SKETCH) G. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(a) 0. CONTRACT OR GRANT NUMBER(&)

John A. Brewer III, Jeffrey N. Jortner
Warren N. Waggenspack, Jr.

9. PERFORMING ORGANIZATION NAME ND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Computer Graphics Rese ".-& Applications Labora- AREA & WORK UNIT NUMBERS

tory, Mechanical EngineVring Department, Louisiana

State University, Baton Rouge, La. 70803

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Office, Chief of Engineers, U. S. Army September 1983

Washington, D. C. 20314 13. NUMBER OF PAGES

71
t4. MONITORING AGENCY NAME & ADDRESS(I dlffrent from Controlling Office) IS. SECURITY CLASS. (of thle report)

U. S. Army Engineer Waterways Experiment Station Unclassified
Automatic Data Processing Center

IS. DECLASSI FICATION/ DOWNGRADING
P. 0. Box 631, Vicksburg, Miss. 39180 SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

O 17. DISTRIBUTION STATEMENT (of the ebsterat entered In Block 20. If different from Report)

1. SUPPLEMENTARY NOTES
Available from National Technical Information Service, Springfield, Va. 22161.

This report was prepared under the Computer-Aided Structural Engineering (CASE)
Project. A list of published CASE reports is printed on the inside of the back
cover.
I. KEY WORDS (Cantinue on reverse aide it necesary and Identify by block number)

Computer graphics Mathematical models
Computer programs SKETCH (Computer program)
Engineering mathematics
Geometry

21 AITACT '(I ammv.s1 N neeaamy a Identify by block number)

This report provides a reference manual for version 3, modification 1,
of SKETCH, a computer program that can be used for generation of engineering
geometry. kTbe primary objective of program SKETCH is to assist the user in
creation of precise mathematical models of engineering geometry from roughly
drawn pictures. A picture or sketch is constructed in an on-line fashion using
interactive graphics techniques. The data base which results consists of
three-dimensional (3-D) coordinates, lines, polygonal faces, (Continued)

DO , F75 IDIT1OF I NOV SISOBSOLETE Unclassified

SECURITY CLASSI FICATION OF THIS PAIE (hen Dote Entered)

i% . .-'. ., , ,.. .,,.. .. , . , . ,., . ,..

Unclassified
SECURITY CLASSIFICATION OF THIS PAGCWht DI, ,utme

20. ABSTRACT (Continued).

> curves, and surfaces. Curved surfaces, however, are not supported in version
3, modification 1, of SKETCH.

A user of SKETCH first interactively creates a schematic representation
of the intended geometry. The schematic can be a two-dimensional (2-D) cross
section or a 3-D pictorial. Straight lines alone are used in the initial
sketch. Polygons or polyhedra defined by the lines are dimensioned by the
user and automatically converted o a 3-D mathematical model by SKETCH. Arcs,
circles, ellipses, and splines can be added after the 3-D conversion takes
place. The original straight lines therefore serve as control information and
boundary conditions for the curve forms.

SKETCH is designed to allow the definition of any engineering geometry,
but is particularly advantageous when creating asymmetric geometry. The result
of a sketching session is an output file consisting of coordinates, lines,
faces, isolated curve segments, and splines. The files can be created or
modified with the system editor, if desired.

.

Accessl"v Fo'r

Dist

'1'

Unclassified
SMCUMITY CLASSIFICATION OF THIS PAGEhon DOM Entefed)

PREFACE

= This is the reference manual for version 3, modification 1, of SKETCH, a

computer program that can be used for generation of engineering geometry. The

work in writing the computer program and the manual was accomplished with

funds provided to the U. S. Army Engineer Waterways Experiment Station (WES),

Vicksburg, Miss., by the Civil Works Directorate of the Office, Chief of Engi-

neers, U. S. Army (OCE), under the Computer-Aided Structural Engineering

(CASE) Project.

Specifications for the program were provided by the members of the CASE

Task Group on 3D Stability. The members of the task group during the period

of development (though not all served the entire period) were:

Mr. Charles W. Kling, Mobile District (Chairman)
Mr. Robert Haavisto, Sacramento District
Mr. John Hoffmeister, Nashville District
Mr. William Holtham, New England Division
Mr. Gerrett Johnson, Seattle District
Mr. Tom Leicht, St. Louis District
Mr. Thomas J. Mudd, St. Louis District
Mr. John Tang, Sacramento District

The program was developed at Louisiana State University (LSU) in the

Computer Graphics Research and Applications Laboratory by Dr. John A.

Brewer III. This manual was written by Dr. Brewer, Mr. Jeffrey N. Jortner,

and Mr. Warren N. Waggenspack, Jr. A number of graduate students contributed

to the development and debugging of SKETCH and to refinement of the documenta-

tion. Mr. Colin B. Selleck" worked on the command interpreter, Mr. David E.

Wilbanks coded the in-core data management system, and Mr. Waggenspack devel-

oped the merge capability. Mr. Jortner worked on the circular arc, circle,

quadratic, and cubic curve capabilities. A mechanical engineering undergrad-

uate, Ms. Christine M. Behrmann, helped with the documentation and assisted in

debugging the program.

The work was performed under the direction of Dr. N. Radhakrishnan,

Special Technical Assistant, Automatic Data Processing (ADP) Center, WES.

Mr. Fred T. Tracy, Chief, Research and Development Software Group, ADP Center,

* - served as technical point of contact at WES. Mr. Donald R. Dressler, Struc-

tures Division, Civil Works Directorate, was the OCE point of contact.

Commanders and Directors of WES during the preparation and publication

-i%

of this report were COL N. P. Conover, CE, and COL T. C. Creel, CE. Technical

Director was Mr. F. R. Brown.

2

-'9 CONTENTS

Page

PREFACE.

INTRODUCTION................................4

Objectives..............................4
Features...............................4

FUNDAMENTAL ALGORITHMS...........................6

Development of 3-D Models 6
Observation Transformation 11
Face Generation. 13
Curve Definition.................... 1

DATA STRUCTURE AND MANAGEMENT. 20

Overview of Data Organization. 20
Elements of Object Definition. 20
Multiple Objects 28
Merge Concepts 29

USER INTERFACE 34

Coammand Interpretation 34
Error Processing 34

BIBLIOGRAPHY 36

APPENDIX A: OVERLAY STRUCTURE Al

TABLES Al AND A2

APPENDIX B: SUBROUTINE DESCRIPTIONS BI

TABLE BI

APPENDIX C: IN-CORE DATA MANAGEMENT SYSTEM. Cl

General Information. C
* Description of Construct Handling Routines C3

Internal Construct Structure C7
Addition of Space to a Construct C9
Deletion of Space from a Construct. CIO

*Reformatting of Arrays.......................Cil

APPENDIX D: COMMAND PREPROCESSOR LSUCMD APPLICATION PROGRAMMER'S
GUIDE DI

APPENDIX E: ERROR MESSAGES. El

3

REFERENCE MANUAL: COMPUTER GRAPHICS PROGRAM FOR

GENERATION OF ENGINEERING GEOMETRY (SKETCH)

INTRODUCTION

Objectives

* The primary objective of program SKETCH is to assist the user in crea-

tion of precise mathematical models of engineering geometry from roughly drawn
pictures. A picture or sketch is constructed in an on-line fashion using in-

* teractive graphics techniques. The data base which results consists of three-

dimensional (3-D) coordinates, lines, polygonal faces, curves, and surfaces.

Curved surfaces, however, are not supported in version 3, modification 1, of

5, SKETCH.

A user of SKETCH first interactively creates a schematic representation

of the intended geometry. The schematic can be a two-dimensional (2-D) cross

section or a 3-D pictorial. Straight lines alone are used in the initial

sketch. Polygons or polyhedra defined by the lines are dimensioned by the

* user and automatically converted to a 3-D mathematical model by SKETCH. Arcs,

circles, ellipses, and splines can be added after the 3-D conversion takes

place. The original straight lines therefore serve as control information and

boundary conditions for the curve forms.
SKETCH is designed to allow the definition of any engineering geometry,

but is particularly advantageous when creating asymumetric geometry. The re-

sult of a sketching session is an output file consisting of coordinates,

lines, faces, isolated curve segments, and splines. The files can be created

or modified with the system editor, if desired.

Features

SKETCH extensively uses interactive graphics as a communication mode be-

tween the user and the computer. In an environment capable of responsive in-

5. teraction, SKETCH is very effective. Typed commands are processed through a

user-friendly command interpreter which preprocesses commands for syntax

errors.

Sketched objects using graphic input techniques do not have to be

4

carefully constructed. Lines which are intended to be parallel to principal

axes, for example, can be sketched very inaccurately. Alignment is not a cri-

terion for sketching. Only the general shape and topology need be correct.

However, line names are part of the topological information and must be speci-

fied correctly.

Although precise alignment is not required, a principal line sketched to

within 5% of the proper slope will be automatically named "X", "Y", or "7".

In the case of 2-D cross sections, the line naming problem is solved com-

pletely as lines not parallel to the two principal axes involved are assumed

to be frontal lines ("F" lines) and are so named by SKETCH. If the program

incorrectly labels a line, the user should rename the line using graphic input

methods.

All data are managed in a single FORTRAN array by the use of five in-

core, data management routines. This memory management method optimizes the

use of available primary storage. Multiple objects are managed within the

data structure so that complex objects or scenes can be created in a piecemeal

fashion. The suggested approach is to complete a set of fully dimensioned

subobjects and then merge them (using the MERGE command) into a single object

or scene.

V. 5

4. FUNDAMEINTAL ALGORITHMS

Development of 3-D Models

This section is a description of the logic involved in the automatic

* creation of a 3-D data base from a rough, 2-D sketch through the use of the

* SKETCH program environment.

The fundamental user-generated information consists of a table of 2-D

coordinates (the geometry) and a table of lines (the topology) which define

the intended geometric model. Sketches are created through a menu-driven pro-

- cess with the user selecting various options and entering the data with appro-

priate graphical input devices.

The user generates a sequence of straight lines and coordinate informa-

tion which form a polygonal representation of the intended polyhedra. Poly-

* gons may be open or closed, and polyhedra may be convex or concave. Also, 2-D

cross sections can be sketched and dimensioned. Such data will simply become

3-D data in a coimmon principal plane after automatic conversion to a refined

geometric model.

In addition to providing a topological sketch, the user is also required

to supply information about the 3-D orientation of lines. He must specify

line types for all lines according to their position in three space relative

to the principal axes and principal planes. A line can be in one of seven

possible positions: parallel to any of three principal axes, parallel to any

of three principal planes, or in an oblique position. The naming convention

used by SKETCH is as follows:

"V," ,Y", "'Z" - Refers to the fact that the line is parallel to
one of the principal axes, X, Y, or Z, respectively.

"tH",1 "1P", 1"F" - Refers to a Horizontal, Profile, or Frontal line
which is parallel to one of the principal planes, XY, XZ, or YZ.
A line in one of these three orientations is termed an Inclined
line.

"0" - Refers to a line which is not parallel to a principal axis
or principal plane. This is an Oblique line.

The topological description plus the line type information provides substan-

tial, but in general not complete, information about the 3-D shape of an ob-

ject. Ambiguous objects or portions of objects can occur if too many oblique

lines or, in some ca a!, incY .d lines are connected.

Dimensioning Planes

Every coordinate in three space can be located at the intersection of

three mutually orthogonal planes (Figure 1). If the three planes are respec-

tively perpendicular to principal axes, they are considered principal planes.

The class of planes selected is special in

that each plane is perpendicular to one of

the three coordinate axes, and for this

reason each is called a principal plane or

"dimensioning" plane.

To locate a single point in three

space, all that is required is the loca-

tion of the respective dimensioning

planes. One might wonder why not directly

establish the Cartesian components in-

. stead? The answer to this lies in the

fact that a plane can contain an infinite

number of points, and therefore has the

* ability to establish a single component Figure 1. Dimensioning planes

for a large number of points with the at a point

specification of a single value.

The benefit of the dimensioning planes concept is demonstrated effec-

tively in SKETCH. Before the actual input of dimensions is requested, an

attempt is made to assign each coordinate in an object to a triad of dimen-

sioning planes (one in each of the three principal directions). This is ac-

complished using information contained in the line table.

A single straight-line segment will involve a minimum of 4 to a maximum

of 6 dimensioning planes depending on the line type (see Figure 2).

The endpoint of a line parallel to a principal axis (e.g., the X axis)

.- will have the same coordinate values in two or three directions; i.e., Yl = Y2

and ZI = Z2. Thus, to locate the relative position of the endpoints of the
line, a single incremental value AX is required. By similar reasoning, line

types H, P, and F require only two incremental values and 0 lines require

three.

Establishing a single point from which all others may be referenced,

SKETCH progresses through the line table and eventually assigns all end-

points to a set of dimensioning planes. It should be pointed out that no

7

.. , .:',.: : .. :i] . . .• .-

Al a. Principal line (X, Y, Z)

A b. Inclined line (H, P, F)

nIn

na C. Oblique line (0)

In

Figure 2. Dimensioning planes of the different line types

8

free-standing points are allowed to exist in an object definition; however,

they could be accommodated with only minor modifications. In addition to lo-

cating the endpoints in a plane, the algorithm also maintains a counter of the

required number of dimensioning planes in each of the principal directions as

this information is useful later on in the dimensioning process. An example

object and the resulting dimensioning planes are shown in Figure 3.

Dimensioning Process

After all coordinates are assigned to the proper dimensioning planes,

Y Dimensional Planes

X Dimensional Planes

'Z Dimensional Planes

Figure 3. Sketched object with resulting
dimensioning planes

9

~.~-.. -- 7-- - --

the actual specification of dimensions commences. Looking aL a single direc-

* tion (see Figure 4), it is evident that to establish the relative position of

* the coordinates, the user must specify N - 1 dimensions where N is the number

of dimensioning planes in that direction. The actual or absolute coordinate

* values are set using the coordinate value of the reference plane established

* by the user upon entering the dimensioning stages of SKETCH.

k~22

23

~ D 2 D N N

Figure 4. Schematic of the dimensioning plane/

dimension requirement relationship

Extension lines provide another dimensioning aid in SKETCH (see

Figure 5).

A single extension line for each dimensioning plane is projec~ed from

the first coordinate located that exists within that plane. Extension lines

for the X, Y, Z directions are projected parallel to the Z, X, Y directions,

respectively.

To enter a dimension, the user locates a pair of extension lines, the

* first of which is assumed to have a lower relative coordinate value in order

* for the information to be processed properly. The user is only allowed to

specify component dimensions, and a simple check for redundant information is

* made before accepting a given dimension. There are no other rules governing

which dimensions should be given or the order in which they should be speci-

fied. A series or counters maintains the number of dimensions given and the

number required in each direction.

As the dimensions are accepted, the program builds a set of tables with

10

Figure 5. Sketched object with generated
extension lines

extensions "XD",1 "ZD".~9 These are described more fully in the next chap-

ter under "Elements of Object Definition." When enough information is col-

lected, the user is notified and the resulting tables are passed to another

subroutine CVTSTR. This subroutine processes the information in the dimension

tables and generates the proper 3-1) coordinate values for each of the points

of an object.

Working out from the reference plane, dimension values are successively

added or subtracted from the reference value. In this manner, the coordinate

value of each dimensioning plane is calculated. When this is done, the infor-

mation is then simply transferred into the coordinate table.

Observation Transformation

The observation transformation is designed to be user-friendly in an

. . . .

.

engineering environment. In creating pictorial sketches, the engineer thinks

in terms of major axes laid in arbitrary directions, rather than in terms of

observers, picture planes, etc. The transformation technique used in SKETCH

provides a user interface free of concern for observer vantage points, picture

planes, associated scale factors, and rotation angles.

The transformation is fundamentally a shear transformation,

[x' y'Z' [x y z 1 OS a sin a 0 01
cos P sin 0 0 0

11=[XZ][os Y sin Y 1 oj
0 0 1

Principal coordinate axes x, y, and z are mapped into arbitrary positions with

angles a, P, and y defined as shown in Figure 6. Examples using various

values for a, , and y are given in Figure 7.

z' TRACE IN x-y PLANE:

y

[01011 [cos y, sin -, 0,1

z [cos 0, sin ,0,1 j

[cos -/, sin T, 1,1]
co .sna ,

P

zX

P31

z [1Will

Figure 6. Mapping principal axes into arbitrary positions
on the x-y plane

. ... 12

. SXC~~~. 7 7'7:---- -- -- ..

Y X

xx

Y

Figure 7. Example views with arbitrary placement of axes

Face Generation

:7.

The face generation algorithm is currently limited to creation of planar

faces of polyhedra bodies. A candidate object for automatic face generation

must be a fully defined 3-D polyhedron. In response to the CREATE FACES or

GENEATE FACES command, the algorithm erases the screen, redisplays the object

with dashed lines, and proceeds to retrace each possible face, one at a time.

13

..................

* The user is provided the opportunity to reverse the order of sides, to reject,

"* to accept, or to repeat the display of each retraced face.

The algorithm is based on the fact that an edge of a face will not be

used more than twice. In other words, a single edge is expected to be common

• to no more than two faces. The user must, therefore, be careful not to accept

an internal polygon, such as the "neck" shown in Figure 8, as an external

*i face. The face generation logic does not distinguish external faces from in-

ternal polygons. In fact, a particular internal polygon may be chosen as a

face candidate numerous times, and the user should reject such a choice each

*' time it appears.

The order in which the sides of the first face are defined by the algo-

rithm is arbitrary. If the user reverses the order of the face, each face

* thereafter will be ordered consistent with the first.

~~4

14I Ii

f I,4I *.. \.

I I
II //
// I

// I /"

Figure 8. An internal polygon of
a polyhedron

14

i.

Curve Definition

Parametric Quadratic Curve

[x y z = [t2 t i i a a
-"[bl b2 b3

c c2 c3

2

Ix y zi = ft2 t 1] A (1)

*, where

A [2 -4 2 3 L 1 Y , z 21j3 4 x2 y2 z2

0 x3 Y3z

The general matrix form of the quadratic curve is given by Equation 1.

The A matrix is found by multiplying a constant matrix and a point matrix to-

gether. The three points required are obtained by pointing at two intersect-

ing lines with a common endpoint or pointing at any three points in an object.

The A matrix is saved in the matrix table and is not regenerated each time the

curve is drawn. To draw the curve, points are generated by varying the param-

eter t from 0 to 1 using increments of 0.05.

Overhauser Cubic Curve

Ix y z 1] = [t3 t2 t 1] a I a2 a3 0 [t3 t2 t 1] A (2)
b 1 b 2 b 3 0

c 1 c 2 c 3 0
d1 d 2 d 31

where

A = -1/2 3/2 -3/2 1/2 x1 Y z 1
1 -5/2 2 -1/2 x2 y2 z 2 1

-1/2 0 1/2 0 x 3 y3 z 30 1 0 0 J x4
;' I 0 4 Y4 '41

The general matrix form for the curve is given by Equation 2. With this for-

mulation, four points are necessary to define a cubic curve between the second

and third points.

Within the SKETCH environment, the four points may be selected arbitrar-

ily in three space or by selecting three contiguously intersecting lines. The

gM:6

:j 15

4

* -

A matrix is calculated by multiplying together the constant matrix and the

. point matrix. The resulting matrix (A) is then stored in the matrix table and

.' not regenerated each time the curve is drawn. To draw the curve, points are

generated by varying the parameter t from 0 to I using an incremental value

of 0.05.

Circular Arc

A radius and two lines with a common endpoint are specified. The common

endpoint is P2 as shown in Figure 9. Unit vectors, A and B, are calculated

for each line in the direction away from P2. The unit vector perpendicular to

the plane containing vectors A and B is C (see Figure 10). From this vector,

two angles, a and P, are found. These angles are the rotations about the X

and Y axes, respectively, necessary to orient the curve into the XY planes.

P2

A B

R

PP/ PPT

PI CP P3
Pcp

Figure 9. Circular arc definition in
the XY plane

Figure 9 shows PPC and PPT which are unit vectors perpendicular to A and

B. Using the radius specified, the center point (CP) of the arc is calcu-

lated. The curve is then drawn using transformations which effect a rotation

about an axis through CP and perpendicular to the plane of the curve.

This transformation is recursively applied to the initial point of the

arc, thus producing the points on the arc. The total transformation is com-

" .* posed of several separate transformations:

* T T *T *T -T *-T *T
"- ry rx rot rx ry ti

16

q 70

Y

!X

....

Figure 10. Rotation angles a and

T t = translation from point (0,0,0) to CP

T = rotation about the Y axis of 0 radiansry

T = rotation about the X axis of a radians
rx

Trot = rotation about the Z axis of 5 degrees

[x' y' z' 11 = [x y z 11 T

The total transformation is stored in the matrix table and is then a

constant for that particular arc.

Circle

A full circle is drawn in the same manner as the circular arc, with one

exception. The transformation is applied through 360 degrees. Also, if no

radius is initially given, then half the length of the first line specified is

used as the radius.

Elliptical Arc

Two distances, A J and BN, and two lines with a common endpoint are

specified (see Figure Ila). The common endpoint is P2. Unit vectors (A and

17

Us.

S.y

9.P2

x

C(a

S.y

'pA

* Figure 11. Elliptical arc definition in the XY plane

18

B) are calculated for each line in the direction away from P2. The unit

vector perpendicular to the plane containing vectors A and B is C. From this

vector, two angles (a and P) are found. These angles are the rotations about

the X and Y axes, respectively, necessary to orient the curve into the XY

plane (see Figure 10).

*PPC and PPT are unit vectors perpendicular to A and B in the XY plane

(see Figure lib). A parallelogram with sides of length AMJ and BMN is then

defined which locates the focus of the arc CP (see Figure Ila).

*: The parallelogram is transformed into a rectangle with the vector A par-

allel to the X axis and CP at the origin. This is accomplished with a trans-

lation, a rotation about the Z axis, and a shear in the XY plane. A circular

arc is then drawn in the rectangle. When the inverse transformations are ap-

plied, an elliptical arc is generated. Again, the curve is generated by re-

cursive application of the rotation transformation to the initial point, simi-

lar to that done with the circle. All the transformations can be concatenated

into a single matrix T:

T -Ttl -Try rx Trz -Tshx Trot Tshx
*-T * -T T * Tt

rz rx ry ti

T t = translation from point (0,0,0) to CP

T = rotation of P radians about the Y axisry

T = rotation of a radians about the X axis
rx

T = rotation of A radians about the Z axis
rz

Tshx = shear of a radians in the X direction

Trot = rotation of 5 degrees about the Z axis

This total transformation is stored in the matrix table and becomes a constant

for the ellipse.

Full Ellipse

-° A full ellipse is generated in the same manner as described for the

elliptical arc with the recursive application of the transformation through

360 degrees. Also, if no distances are specified in the command, then the

lengths of the specified lines are used for AMJ and BMN.

19

,- i'.: . ' ; ,'''' -" " '' / '''" ." ' '. - " ' '' - '" . ''"; ' - . " " -" ' ' " " "

DATA STRUCTURE AND MANAGEMENT

Overview of Data Organization

The data management routines are designed to make efficient use of pri-

mary memory. In addition, the management of multiple objects is facilitated.

A more detailed description of the fundamental routines may be found in

Appendix C.

An object or scene consists of a combination of tables relating to geom-

etry and topology. The data management system affords the programer the abil-

ity to reference all the tables or constructs by name. The program uses this

capability to link all the proper tables to a single object. SKETCH builds

its own higher level data structure using the data management routines de-

scribed in Appendix C.

Users of the SKETCH program are given the liberty of working with a sin-

gle, unnamed object or multiple objects with name consisting of one to six

characters. Internally, the data management system references all tables or

constructs with an eight-character label. With the additional two-character

suffix, SKETCH is able to distinguish the various objects as separate entities

and also to manipulate the individual tables that comprise the structure of a

single object.

Elements of Object Definition

An object named (xxxxxx) may consist of one or several of the following

classes of tables:

OBJECT DEFINITION xxxxxx0
COORDINATE TABLE xxxxxxCT
LINE TABLE xxxxxxLT
FACE TABLE xxxxxxFT
CURVE TABLE xxxxxxKT
MATRIX TABLE xxxxxxMT

Extension Line Tables
COORDINATE TABLE xxxxxxEC
LINE TABLE xxxxxxEL

Dimension Tables
X xxxxxxXD
Y xxxxxxYD
Z xxxxxxZD

TEMPORARY xxxxxxPP
TEMPORARY xxxxxxVV

20

-• -

Upon creating an object using the sketch command, an OBJECT DEFINITION

construct is built. It provides a complete list of all the information tables

that combine to "define" a given object. As tables are added or deleted, the

entries in the object definition are modified to reflect the change. A typi-

cal OBJECT DEFINITION construct appears in Figure 12.

The first element is the display status flag indicating if the object is

* currently being displayed (0-no; 1-yes). The second and third elements con-

tain the labels of the last coordinate and line, respectively.

The next portions of the object definitions are blocked off in groups of

. three words each. As new information is added to the object geometry, various

DISPLAY STATUS

LAST POINT #

OIJECT DEFINITION
LAST LINE #

ILASS " 50,52
21

xxxx

XXCT

22

XXXX

XXLT
0

Figure 12. Organization of object definition

21

tables are added to the object definition. The first word in each three-word

block contains the KLASS of the table of information that comprises a portion

of the object description. The remaining two words in each block contain the

name used by the data management routines to access the table. A given object

definition may contain several of these construct blocks, and as tables are

added or removed from an object, the corresponding entry in the object defi-

*" nition is entered or deleted.

The coordinate table consists of several blocks. Each block contains

the information shown in Figure 13 when the object is still 2-D. The first

word in the block is the label used to distinguish individual points. The

next two words hold the actual location in screen coordinates where the point

will be displayed. The remaining pair of words holds the initial screen loca-

tion of the point when it was entered in sketching. The screen and sketch co-

ordinate pairs differ only when the ZOOM option is active.

When conversion to 3-D is initiated, the xxxxxxCT construct is expanded

to accommodate three additional records. The space is first used for the di-

mensioning plane information (see page 7) and then the actual 3-D coordinate

value (see Figure 14).

The line table information is also organized into sectioned blocks, each

POINT NUMBER

X PLOT COORDINATE TABLE
2-D SKETCH

Y PLOT KLASS : 21

X SKETCH

Y SKETCH

Figure 13. Coordinate table for a 2-D sketch

L 22

POINT NUMBER
a)

- X PLOT COORDINATE TABLE

2-0 SKETCH
Y PLOT

N ITH
X SKETCH OIUENSIONING PLANES

Y SKETCH KLASS : 21

IX PLANE

IY PLANE

1Z PLANE

POINT NUMBER

b)

X PLOT COORDINATE TAIBLE

3-0 SKETCH
Y PLOT

KLASS : 21

X SKETCH

Y SKETCH

X COORDINATE

Y COORDINATE

Z COORDINATE

Figure 14. Expanded coordinate table
'a

. 23

.

one maintaining the information shown in Figure 15. The first word of the
'C.

block is again an identification label. It distinguishes this line from all

others. The second and third entries hold offset values for locating the

proper endpoints in the coordinate table. The offsets are necessary as

points may be added or deleted from an object at any given time. The line

type, described on page 7, is contained in the fourth element of the block.

The projected line length and sine and cosine of an angle, measured from the

horizontal on the screen, fill the remaining three words that comprise a sin-

gle block.

The face tables, referenced by xxxxxxFT, have a variable block size.

The basic structure for one is depicted in Figure 16. The first word is a

counter of the total number of face definitions contained in the table. Fol-

lowing the counter is a series of blocks that contain individual face descrip-

tions. Each definition begins with an indicator of the number of words re-

quired for that particular face description. The next series of words holds

offsets into the coordinate table for addressing the vertices of a face.

For processing curve information, a matrix table for assisting display

and a curve table for holding the curve definition are maintained. The curve

table is divided into seven word blocks (see Figure 17). The first word is an

integer value identifying the curve type: 1 - circular arc; 2 - full circle;

3 -quadratic curve; 4 - cubic curve; 5 - elliptical arc; and 6 - full ellipse.

The next three words in the block hold offsets into the coordinate table for

locating the three points used to define the curve. Word five of the block

holds the number of incremental steps used to approximate the curve. The

sixth element may contain either a radius of curvature, another coordinate

table offset, or nothing. The last word in the block is a pointer into the

matrix table indicating which matrix is used to display this curve. The ma-

trix table construct (see Figure 18) is sectioned into twelve word blocks. It

stores by column the first twelve elements of the 4 x 4 matrix required to gen-

Serate the curve display. The last column of the matrix is a constant [0 0 0 1].

When the dimensioning process is initiated, the coordinate table is ex-

panded, as stated before, and several new constructs are created. These are:

EXTENSION LINE COORDINATE TABLE; EXTENSION LINE TABLE; and X, Y, AND Z-

DIMENSION TABLES. The format for the xxxxxxEC and xxxxxxEL constructs is the

same as that for the coordinate and line tables described previously and will

not be repeated here.

24

t -

.',4

a.4

'o

LINE NUMBER

POINT I LINE TABLE

POINT 2 ILASS 22

LINE TYPE

LENGTH

SIN e

Cos e

Figure 15. Organization of line
table information

NMIBER OF FACES

FACE NUMBER

WliR IF RECORDS

POINT I FACE TABLE

POINT 2 KLASS : 24

POINT 3

POINT I

FACE NUMBER

13l OF RECINDS

Figure 16. Format for face
table information

; 25

.. aa. •

CURVE TYPE

POINT I

POINT 2 CURVE TABLE

POINT 3 KLASS :23

CURVE INCREMENT

P11 LABEL OR RADIUS

VAIRIX POIN4TER

Figure 17. Curve table format

A21

A 31 ENII1 TILE

A4 [ISS :3

- * 43

Figure 18. Mlatrix table layout

26

The dimension table constructs follow the form shown in Figure 19. The

*first word in the table is an indicator of the total number of dimension

strings comprising the table. The record lengths are variable, and the first

entry in each dimension string denotes the number of records that make up a

given string. After that, the words alternately contain plane numbers and

distance values (the dimensions specified), with both the initial and final

words being plane numbers.

Two additional tables are created when dimensioning is complete. These

NUMBER OF SIRINGS

NUMBER OF RECORDS

PLANE I DIMENSION TABLE

DIMENSION VALUE [ISS :28,29,30

PLANE 2

DIMENSION VALUE

PLANE 3

NUMBER OF RECORDS

Figure 19. Organization of the dimension
table elements

27

tables (xxxxxxW and xxxxxxPP) are used for reorganizing the dimension infor-

mation and plane definitions. This assists the redimensioning process if and
when it is required.

Multiple Objects

Multiple-object capability is provided for in SKETCH by utilizing the

power of the data management system. SKETCH allows the user to name each ob-

ject with a six-character label. Internally, the data manager treats all

names as eight characters in length (see the description of objects internal

structure on page 34). The last two characters enable SKETCH routines to re-

late the various information tables to a single object. All tables that con-

tain the same first six characters are part of the description of a single

object.

There is only one active object in SKETCH at any given time. The "ac-

tive" object is simply a utility provided for the user so that the object name

does not have to be entered each time a command is given. When no object name

is specified with a command, SKETCH uses the currently active object name

which is contained in variable EDTNAM, the first element of the labeled common

area EDSTAT. Whenever an object name is specified as part of a command, it is

imsediately loaded into EDTNAM and it becomes the active object.

The USING 'objnam' command is supplied as a convenience for the user so

that at any time an object can be made the active object. This command is

convenient to use when an object name has been misspelled and subsequent com-

mands issued yield an ERROR 110. This error means that SKETCH could not lo-

cate any information under the misspelled name. The USING command enables

the active object name to be corrected. It is also helpful when switching be-

tween various objects adding curve information because names are not accepted

as part of the curve commands. The active object is used for all curve

commands.

The handling of information by the SKETCH data manager also allows the

user to operate on objects individually. Each one can be edited, erased, or

modified without affecting the status of the others. The multiple-object ca-

pability allows a user to define a section of a complicated structure as a

separate object. When all elements are completed, then the resulting assembly

can be formed by merging components together.

28

a- ~.~ *~ ~1~~~ ~. * ** *.* ,.*-a...- -* -* ~ C

. - r- - ---. . L ' ''' .'. - . '-". " .
.? ' -. """ " " -. " - -. " -' r r " - r . . "- r"

Merge Concepts

For a sketching program to be truly effective as a design tool, the user

must be provided the capability of combining several component geometries into

a single, more complex entity. This enables the user to recall a common ele-

ment to be utilized in several different designs without having to reconstruct

it each time, and it allows the building of complex geometries in sections.

Within the SKETCH environment, the MERGE subroutine handles this pro-

cessing. It compiles, under a single name, the geometric information con-

tained in two or three separate objects. Access to MERGE is accomplished

either directly through a user command (KILFLG = 0) or indirectly from the

INNPUT subroutine (KILFLG = 1).

The MERGE logic consolidates all coordinate, line, curve, and matrix in-

formation for separate 3-D objects. MERGE does not accept 2-D sketched infor-

mation. Also, face tables are not processed in merging. If that information

is desired for the combined object, it must be regenerated using the GENERATE

FACES command.

The command syntax utilized for a call to MERGE is as follows:

MERGE OBJECTA (OBJECTB) (INTO) OBJECTC

OBJECTB and INTO are optional components of the command; however, if

specified, OBJECTB must exist and the word INTO must be correctly spelled. An

OBJECTC, if it does not already exist, will be created when the MERGE command

is given, but the same does not hold true for OBJECTA which must exist prior

to the merge call.

In combining multiple objects under a single name, all redundant infor-

mation is eliminated and, in the process, data management addresses are up-

dated to reflect all changes. The procedure through which merging is accom-

plished is described in the following paragraphs.

The initial sections of code in MERGE handle variable initialization and

processing of the user command. Checks are made for syntax errors, and inter-

nal flags are set to facilitate further processing.

Upon completing the command processing, MERGE goes through a sequence of

locating the required objects and information. It also computes the memory re-

quireents to complete the process. If any problems are determined, the merge

attempt is aborted, and program execution is returned to the driving routines.

29

°.

., 17.

The object information associated with SKETCH consists of a series of

tables containing geometry and topology. These tables constitute the data

base required to generate a display on the user's terminal. Upon examination

of the object structure, it is evident that a coordinate table establishes the

basis for all other geometric information. That is, all line and curve infor-

mation is generated using the coordinate table data and offsets into the coor-

dinate table; therefore, because of its importance, the MERGE routine deals

with the coordinate information first.

Initially, if OBJECTC exists, it is renamed to be handled internally as

$#$#$. In the next step, copies of the coordinate information for $#$#$,

OBJECTA, and OBJECTB are placed behind the newly created object definition for

OBJECTC. After each table is copied, a search is initiated to locate repeated

coordinates which are marked by replacing their coordinate or number label

with the negative absolute value of the coordinate label of the point which it

matched. When done, the new OBJECTC will have a continuous sequence for its

coordinate labels.

Line table information is processed next and is handled very similar to

the coordinates. In transferring the line information, however, each new ele-

ment is 7hecked with existing lines. When no match is found, the information

for the single line is copied to the new OBJECTC. Curve information is pro-

cessed in the same manner as the lines, with the additional requirement of

transferring the matrices that correspond to the individual curves. In each

case, the element labels are resequenced.

When all object geometry has been transferred to the new OBJECTC, a

search is conducted through the coordinate table, and all elements with a non-

positive label are deleted from the object. In this manner, the newly com-

pleted OBJECTC occupies a minimal amount of the FREE array. The final step in

the merging process is to eliminate all information referenced by $#$#$.

When MERGE is accessed through the INNPUT subroutine, slight changes

occur in the procedure. The command interpreter section is bypassed, and the

matrix information is not processed. Bypassing the interpreter results be-

cause there is no command to be decoded when MERGE is called from the INNPUT

routine. Skipping the matrix processing section occurs because all matrix

generation on input data takes place after INNPUT has finished collecting data.

The last major difference is that all data referenced by the name $$$$$# are

eliminated in addition to those referenced by $#$#$ ($$$$$# is a temporary

30

L

name assigned to objects from the INNPUT routine).

The internal arrangement of object information in the FREE array and a

display of addresses internal to the MERGE routine are depicted in Figures 20

and 21 for convenience.

31

°.

S

do 60-.

B MATRICES LOCUlI

8 CURVES LOCKI

B LIN~ES LOWST
---------------------------------- -- -- -- -- -- -- --

B COORDINATES LOCCTI

OBJECT 'B DEF. LOCOSI

C MATRICES LOCUIS
--

COMMON C CURVES L@CKT3

* A EAC LINES LOCLT3

C COORDINAIES -L@CCTJ

rc-OBJCT *C DEF. LC8

71V

A MATRICES -L@CMI3

A CURVES L@CKTO

A LINES LCf

A COORDINATES LC1

11ct T *FImNm LOCO9t

Figure 20. Merge objects; original object layout

32

I-.o

OWE

LOCMTC

COMMON A CURVES

AREA C
LOCK TC

"FREE"

A LINES--- ----------
-9.I

::'. B

.4A =MA C NS L@CCTA,., C / ..LOCCTC

ID fuC le' F.

,.A,

Figure 21. Final form of combined
object information

33

r:" " -'I - . 4 WS" " ," " " 4" " 4 "- 4 " ""'" "' ' '" ' " -. *;: .,.. .-..1. . _ .

USER INTERFACE

Command Interpretation

In order to provide a user-friendly interface for SKETCH, a powerful

command interpreter is utilized. As commands are entered, the character and

numerical strings are sorted by a preprocessor (see Appendix D). The results

are passed through the labeled common area CHD to the routine DRVER2.

In DRVER2, the utility interpretation routine MASK is used extensively.

It allows DRVER2 access to any number of characters in the words used in spec-

ifying a command. This capability allows the user the freedom of entering

commands iLk an abbreviated fashion. Usually only the first two or three char-

acters are required to recognize specific commands; therefore, misspellings of

commands past the first two or three characters present no problems in SKETCH.

Within DRVER2, several flags may be set depending on the command speci-

* fied. Most of these flags reside in the labeled common area SKLINK. The ma-

jor flag of concern is the variable MODULE. It is used in the main driver to

branch to the proper routines. The value of MODULE is set when the first word

in a command sequence is recognized. Object names are loaded into the common

area EDSTAT, and depending on the routines involved, several other flags may
be set also.

Some degree of interpretation is handled by iipdividual routines, but

these occurrences are very specific and usually only one format is accepted.

Error Processing

In the course of running the SKETCH program, mistakes on entering data

or commands are inevitable. Facilities are provided so that errors are

flagged, and the user is notified as to the nature of the problem.

The utility routines provided with SKETCH handle nonfatal execution time

errors in either of two ways. In very many cases, a direct eyr-lanation of ther error is displayed in the scrolling area on the screen. In this manner, the

user has an immediate description of the problem. Errors of this type usually

result from some form of syntax mistake on entering a command string. The cor-

responding message may simply be a request for reentering the correct informa-

tion, or it may indicate some other form of corrective action to be taken.

V 34

p-

;. The second mode of notification is handled by the ERROR subroutine. It

utilizes information loaded into the labeled common storage shown below:

COMMON / ERRORS / ROUr=E,IERSG

This same common area is included in most subroutines. Whenever an

error occurs, the individual routine names are loaded into the double-

precision word ROUTNE, and an error code is stored in IERHSG.

The ERROR subroutine displays the name of the routine and the error code

on the user's terminal, notifying him that an error has occurred. Execution

is then returned to the comand processor. To obtain a description of the

problem, the user must refer to the listing of errors messages found in

Appendix E.

3

,4

.4

* 35

44

BIBLIOGRAPHY

Brewer, J. A., III. 1983. "User's Guide: Computer Graphics Program for Gen-
eration of Engineering Geometry (SKETCH)," Instruction Report K-83-2, U. S.
Army Engineer Waterways Experiment Station, Vicksburg, Miss.
Brewer, J. A. and Anderson, D. C. 1977. "Visual Interaction with Overhauser
Curves and Surfaces," Computer Graphics, Vol 11, No. 2, pp 132-137.

Brewer, J. A. and Haag, A. S. 1980. "A New Approach to Observation Transfor-
mations for Three Dimensional Pictorials," Internal Document, Computer Graph-
ics Research & Applications Laboratory, Mechanical Engineering Department,
Louisiana State University, Baton Rouge, La.

Wilbanks, D. E. 1981. "The Development of Systematic Procedures for Inter-
active Design," unpublished Masters Thesis, Mechanical Engineering Department,
Louisiana State University, Baton Rouge, La.

36

*. .

APPENDIX A: OVERLAY STRUCTURE

Table Al is the command file to create the overlay ,,Cructure for the

SKETCH program on the Honeywell 6600 or DPS-l. A graphical representation

of the overlay structure is given in Figure Al. Table A2 provides an index

of the overlay element labels shown in Figure Al.

Al

Table Al

Overlay Coimand File or Job Control File

10##N,J
20$: IDENT :404245 ,BREWER, 1 ROKAJAB
30$:LOWLOAD:36
40$:OPTION: NOGO
50$:USE: .GTLIT, .TSGF. ,.FTSU. ,.FXEKA. ,FTLK
60$:SELECT:1 1ROKAJAB/CKDRVER1
70$:SELECT: GIRAPHICS/OBJECT2D/TEKBLK
80$:LIBRARY:LO,L1 ,L2,L3
90$: LINK: LEVIB
100$:SELECT: 11ROKAJAB/CKDtENU
110$:LINK:LEV1A,LEVlB
120$:SELECT:1 1ROKAJAB/CKDISOBJ
130$:LINK:LEV2A
140$: SELECT:1 1ROKAJAB/CKHODIFY
150$:LINK:LV2IB
160$:SELECT:1 1ROKAJAB/CKDMENU
170$:LINK:LEV3B,LV21B
180$:SELECT: 11ROKAJAB/CKINSRTL
190$:LINK:LEV3C,LEV3B
200$:SELECT:1 IROKAJAB/CKLOCCL
210$:LINK:LEV3D,LEV3C
220$:SELECT:1 1ROKAJAB/CKLOCPT
230$:LINK:LEV3E,LEV3D
240$: SELECT: 11ROKAJAB/CKUPDTL2
250$: LINK: LEV3F ,LEV3E
260$:SELECT: 11ROKAJAB/CKINSRTP
270$:LINK:LEV3G,LEV3F
280$:SELECT: 11ROKAJAB/ CKLOCLN
290$:LINK:LEV3H,LEV3G
300$:SELECT: 11ROKAJAB/CRUPDTL1
310$:LINK:VEV2V,LEV2A
320$:SELECT: 11ROKAJAB/CKDRVER2
330$:LINK:LEV3A
340$:SELECT:1 1ROKAJAB/CKLSUCMD
350$:LINK:LEV2C,LEV2B
360$:SELECT:1 IROKAJAB/CKDFAXES
370$:LINK:LEV2D,LEV2C
380$:SELECT: 11ROKAJAB/CKINIT
390$:LINK:LE.V2E ,LEV2D
400$:SELECT:1 1ROKAJAB/CKDETPNS
410$:LINK:LEV2F,LEV2E
420$: SELECT:1 1ROKAJAB/CKEXILIN
430$:LINK: LV23B
440$:SELECT: 11ROKAJAB/CKINSRTL
450$:LINK:LV23F,LV23B
460$: SELECT:1 1ROKAJAB/CKINSRTP

(Continued)

A2

T~ble Al (Continued)

470$:LINK:LEV2G,LEV2F
* 480$:SELECT: 11ROKAJAB/CKLIST

490$:LINl(:LEV2I{,LEV2G
500$: SELECT:1 1ROKAJAB/CKDIIENS

24 510$:LINIC:LV23A
520$:SELECT: IROKAJAB/CKLSUMCMD
530$: LINK: LV23C ,LV23A
540$:SELECT:1 1ROKAJAIB/CKLOCCL
550$:LINK:LV23D,LV23C
560$: SELECT:1 1ROKAJALB/CKLOCPT

580$: SELECT:1 1ROKAJAB/CKCKRTLF
j 590$:LINK:LEV3J,LEV3I

600$:SELECT: IIROKAJAB/CKCKBEFR
610$:LINK:LEV2I ,LEV2H
620$: SELECT:1 1ROKAJAB/CKCVTDIM
630$:LINK:LEV2J,LEV2I
640$:SELECT: 11ROKAJAIB/CKSAVE
650$: SELECT: I ROKAJAB/CKASSIGN
660$:LINK: LV33A
670$:SELECT:1 1ROKAJAB/CKLSUCMD
680$:LINK:LEV2L,LEV2J

* 690$: SELECT: 11ROKAJAB/CKFACGEN
700$:LINK:LEV2K,LEV2L
710$: SELECT:1 1ROKAJAB/CKINNPUT
720$: SELECT:1 1ROKAJAB/CKASSIGN
730$:SELECT: 11ROKAJAB/CKIPUTPT
740$: SELECT:1 1ROKAJAB/CKIPUTLN
750$:LINK:LV43A
760$:SELECT:1 1ROKAJAB/CKLSUCMD

* 770$:LINK:LEV2M,LEV2K
780$:SELECT: I ROKAJAB/CKARC
790$:LINK:LV33C
800$: SELECT:1 1ROKAJAB/CKLOCCL
810$: LINK:LEV3K,LV33C
820$: SELECT: 11ROKAJAB/CKIN3DPT
830$:LINK:LEV3L,LEV3K
840$:SELECT: 11ROKAJAB/CKUTIL
850$:LINK:LEV3II,LEV3L
860$:SELECT:1 1ROKAJAB/CKDEL4CR
870$: SELECT:1IIROKAJAB/CICUTIL
880$:LINK:LEV2N,LEV2M
890$:SELECT:1 IROKAJAB/CKPARCUB
900$:LINK:LV33D
910$: SELECT:1 1ROKAJAB/CKLOCPT
920$:LINK: LV43C ,LV33D
930$:SELECT:1 1ROKAJAB/CKLOCCL
940$:LINK:LV23L,LV43C
950$:SELECT:1 1ROKAJAB/CKUTIL

(Continued)

A3

* . . 7,

Table Al (Concluded)

960$:LINK:LV23G ,LV23L
990$:SELECT:1 1ROKAJAB/CKELLIP
1000$:LINK:LV53C
1010$: SELECT: I1ROKAJAB/CKLOCCL
1020$:LINK:LV23K,LV53C
1030$:SELECT: 11ROKAJAB/CKIN3DPT
1040$:LINK:LV33L ,LV23K
1050$: SELECT:1 1ROKAJAB/CKUTIL
1060$:LINK:LV23M,LV33L
1070$:SELECT: 11ROKAJAB/CKDEL4CR
1080$:SELECT: 11ROKAJAB/CKUTIL
1090$:LINX:LEV3N,LV23M
1100$: SELECT: I ROKAJAB/CKDEL4EL
1110$: SELECT:1 1ROKAJAB/CK'UTIL
1111$:LINK:LEV2P,LEV2O
1112$:SELECT: 11ROKAJAB/CKMERGE

-A 1113$:LINK:LEV2Q,LEV2P
1114$: SELECT:1 1ROKAJAB/CKINARC
1115$: SELECT: 11ROKAJAB/CKUTIL
1116$:LINK:LEV2R,LEV2Q
1117$: SELECT:1 1ROKAJAB/CKINQUC
1118$: SELECT:1 1ROKAJAB/CKUTIL
1119$:LINK:LEV2S,LEV2R
1120$:SELECT: IIROKAJAB/CKINELL
1121$:SELECT: 11ROKAJAB/CKUTIL
1120$:EXECUTE
1130$:LIMITS:5,37K,-2K,2K
1140$:PRMFL:LO,R,R,GRAPHICS/OBJECT2D/GCSLIB
1150$:PRIIFL:L1 ,R,R,GRAPHICS/OBJECT2D/TEKLIB
1160$:PRIFL:L2,R,R,GRAPIICS/OBJECT2D/HNLLIB
1170$:PRMFfL:L3,R,R,WESLIB/APPLIB

* 1180$:PRMFL:H*,W,R,11ROKAJAB/SK
1190$:ENDJOB

A

,--. ... t - . .- vj c r . C -

N

"'' 0

-, 0
-aI

-, 0

!-!I

Table A2

Overlay Label File Index

ROOT CKDRVRI

LEMi CKDISOBJ
lB CKD1IENU

LEV2A CMODIFY
2B CKDRVER2
2C CKDFAXES
2D CKINIT
2E CKDETPNS
2F CKEXTLIN
2G CKLIST
21H CKDIMENS
21 CKCVTDIM
2J CKSAVE,CKASSIGN
2K CKINNPUT ,CKASSIGN ,CKIPUTPT ,CKIPUTLN
2L CKFACGEN

9 2M CKARC
2N CKPARCUB
20 CKELLIP
2P CKIIERGE
2Q CKINARC,CKUTIL
2R CKINQUCCKUTIL
25 CKINELL,CKUTIL

LEV3A CKLSUCMD
3B CKINSRTL
3C CKLOCCL
3D CKLOCPT
3E CKUPDTL2
3F CKINSRTP
3G CKLOCLN
3H1 CKUPDTL1
31 CKCKRTLF
3J CKBEFR
3K CKIN3DPT
UL CKUTIL
3M CKDEL4CR,CKUTIL
3N CKDEL4EL,CKUTIL

LV21B CKDM~ENU

LV23A CKLSUCMD
23B CKINSRTL
23C CKLOCCL
23D CKLOCPT
23F CKINSRTP
23G CKLOCLN
23K CKIN3DPT
23L CKUTIL
23M1 CKDEL4CR,CKUTIL

(Continued)

A6

Table A2 (Concluded)

LV33A CKLSUCMD
33C CKLOCCL
33D CKLOCPT
33L CKUTIL

LV43A CKLSUCM)D
43C CKLOCCL

LV53C CKLOCCL

IA

*4

A7

*0

.,

77.

APPENDIX B: SUBROUTINE DESCRIPTIONS
.4.

This appendix provides a brief summary of the purpose or function of the

many subprograms that comprise SKETCH. It is not intended to be a complete

documentation of the idiosyncrasies and concepts found in the subprograms.

The routine descriptions are in alphabetical order with the source file

in which each can be located specified in parentheses. A condensed list of

subprogram names and their corresponding source files is given in Table Bi at

*" the end of this appendix.

ACOS (SKELLIP): ACOS is a function subprogram with one real argument,
X. Input must be a number such that X < or = I and the inverse cosine value
is returned in the word ACOS. A value of zero is returned in ACOS for illegal
input values.

ARC (SKARC): This subroutine is used in defining circles and circular
." arcs. The required information is obtained interactively from the terminal

keyboard. It handles the initial display of the curve and adds proper curve
table and matrix table entries to retain its definition.

BCOS (SKINELL): This function subprogram performs the same function as
. ACOS; however, BCOS is used exclusively with the INELL subroutine.

*' CENUMB (SKDRVRI): CENUMB is a subroutine with two real and one integer
arguments: X, Y, and IZ. The integer value contained in IZ is printed on the
screen centered about the location X, Y.

CENSTR (SKDRVR1): This subroutine contains two real and three integer
arguments: X, Y, NCHAR, ISTRNG, and IFLG. A string of characters stored in

*, ISTRNG is displayed on the screen centered about the location X, Y. NCHAR is
the number of characters stored in ISTRNG.

CMDINIT (SKINIT): Subroutine CMDINIT maintains no argument list. Its
purpose is to initialize all of the information required by the command pre-
processor. The labeled common areas CMD and QSTUFF are used to pass the re-
sults. For more details on the use of these common blocks, see Appendix D.

CMDSET (SKINIT): This subroutine has two integer arguments, I and J,
which are used to establish the maximum numbers of words or numbers that will
be acceptable to the command preprocessor LSUCMID.

CNTRPT (SKDRVR1): CNTRPT is a subroutine with six real arguments: X1,
Y1, X2, Y2, XC, and YC. It computes the midpoint of a line segment with end-
points [X1,Y1J and [X2,Y21. The centerpoint values are returned in XC and YC.

CRELIN (SKEXTLIN): CRELIN creates extension lines for the purpose of
dimensioning a sketched object. CRELIN is called three successive times from
EXTLIN. The first call creates XD extension lines parallel to the Z axis.
The second call creates YD extension lines parallel to the X axis. The final
call results in ZD extension lines parallel to the Y axis.

CROSS (SKUTIL): This subroutine has three real arrays as arguments.
The cross product of the vectors A and B is computed and returned in the vec-
tor C.

Bl

CURFIN (SKDRVR1): A subroutine with no argument list, CURFIN is called
when any curves were set up in subroutine INNPUT. It calls the correct sub-
routine to complete the corresponding curve and matrix table information.

DAXES (SKDNENU): DAXES has no argument list. The information required
to position and draw the active coordinate system is contained in the AXES la-
beled common storage.

DBOX (SKDEMU): DBOX is a subroutine with no argument list. The infor-
mation stored in the labeled common block BOUNDS is used to outline the work-
space and menu areas.

DELETE (SKLIST): This subroutine does not hold any calling arguments.
The EDSTAT labeled common storage holds the necessary information for DELETE
to locate and remove all references to the specified object.

DELCOR (SKDEL4EL): This routine is used when the intersection of two
lines is replaced by either a circular or elliptical arc. It replaces the
common endpoint of each of the intersecting lines with the corresponding point
of tangency between the curve and each line.

DEL4CR (SKDEL4EL): This routine deletes the two lines used in defining
a full circle. If the two lines were sides of a square, then the remaining
two sides of the square are also deleted.

DEL4EL (SKDEL4EL): This routine deletes the two lines used in defining
*a full ellipse. If the two lines were sides of a parallelogram, then the re-
* maining two sides of the parallelogram are also deleted.

* DETPNS (SKDETPNS): A major subroutine with no argument list, DETPNS is
used to assign each vertex to a set of dimensioning planes. It also is set up
to determine the maximum number of dimensioning planes required in each of the
three principal directions which are then returned in the labeled common area
DIMPLS.

DFAXES (SKDFAXES): DFAXES has no argument list but instead is used to
interactively define a reference coordinate system. All of the inputs and re-
quired parameters are stored in the labeled common block AXES.

DIMENS (SKDIMENS): This is a major subroutine, and it has no calling
arguments. The necessary information is contained in one of several common
blocks: DIMPLS, SKLINK, EDSTAT, DISTAT, CMD, BOUNDS, and OFFSET. In DIMENS,
the user interactively defines the dimensions needed to locate all the verti-
ces in a 3-D coordinate system. For a more detailed description of the dimen-
sioning process, refer to page 7 of this document or to the SKETCH User's Man-
ual (Brewer 1983).

DISJNT (SKDRVRI): This subroutine is provided with four real arguments
* (XI, YI, X2, Y2) that correspond to the endpoints of a line segment. The rou-

tine's function is to draw only the interior portion of the line segment,
leaving the endpoints open so that the coordinate labels may be displayed
clearly.

DISPLY (SKDRVRI): DISPLY is a major subroutine in the SKETCH package.
It uses the labeled common areas EDSTAT and DISTAT to pass pertinent informa-
tion. DISPLY is responsible for locating and ensuring that any visible ob-
jects are redrawn after the screen has been erased.

B2

DISOBJ (SKDISOBJ): DISOBJ is a major subroutine and does not maintain
an argument list. It processes the actual display of individual objects. All

* object information that is visible will be sent to the screen.

DIST (SKDRVRI): This is a function subprogram that holds two real argu-
*ments: DELX and DELY. It calculates the Euclidean norm or distance for the

two deltas and returns the value in DIST.

DIST3D (SKUTIL): This function subprogram has one real and two integer
calling arguments: IOFFI, IOFF2, and CTNAME. The integer arguments are used
as offsets into the coordinate table whose name is in CTNAME. The 3-D coordi-
nate values of the two points, located using IOFFI and IOFF2, are used to com-
pute the Euclidean norm or distance between the points: SQRT ((X2-Xl)**2 +
(Y2-Yl)**2 + (X2-Zl)**2)

DIMENU (SKDMENU): This subroutine has a single integer calling argument

used to indicate which menu or portion thereof is to be displayed. It uti-
lizes the information content of the labeled common area BOUNDS.

DOT (SKELLIP): DOT is a function subprogram with two real arrays, X and
Y, as the calling arguments. The inner or "dot" product is computed and the

-: value returned in DOT.

DOTPRO (SKEXTLIN): This function subprogram has four real arguments:
X1, Y1, X2, Y2. It performs the same function as DOT but is used exclusively
with the EXTLIN subroutine.

DRVER2 (SKDRVER2): Subroutine DRVER2 has no calling arguments but does
make extensive use of the labeled common areas SKLINK, EDSTAT, CMD, and DISTAT.
This routine functions as the command interpreter for SKETCH. The information
from CMD is translated into a sequence of execution flags, and the results are
transferred to the proper common areas for future processing.

ELLIP (SKELLIP): This is the subroutine used in defining elliptical
", arcs and full ellipses. The required information, three points and two radii,
. is interactively entered from the keyboard. ELLIP handles the initial dis-

play of the ellipse or elliptical arc and adds the proper curve and matrix
definition into the object tables.

ERROR (SKLIST): This subroutine has no calling arguments but uses the
- .~information stored in the labeled common area ERRORS. It writes a message

into the scrolling area on the screen. The message contains a number code
*referencing the problem and the routine name in which the error occurred.

EXTLIN (SKEXTLIN): EXTLIN generates two new tables in the dynamically
*managed data area. A coordinate table and a line table are temporarily re-

quired to store extension line information used in the dimensioning process.

FACGEN (SKFACGEN): FACGEN automatically generates polygonal face infor-
mation for a sketched polyhedron. Faces are interactively displayed as they
are created, and the user is given the opportunity to accept or reject each
face. The order of vertices defining the face can also be reversed if desired.

IDLSH (SKLSUCMD): IDLSH is a function subprogram with a single integer
argument, I. It is part of the command preprocessor package and is used to
locate delimiters inside a command string.

IDLTES (SKLSUCHD): IDLTES is a function subprogram with a single inte-
ger argument, I. It is part of the command preprocessor package and is used
to test for delimiters.

B3

ILSQT (SKLSUCMD): ILSQT is a function subprogram with a single integer
argument, ICNT. It is part of the command preprocessor package and is used to
locate the second of a pair of quotation marks.

INARC (SKINARC): INARC is a subroutine with no calling arguments. It
is used to complete the curve and matrix definitions for circular curve infor-
mation that is being read from secondary storage.

INELL (SKINELL): INELL is a subroutine with no calling arguments. It
is used to complete the curve and matrix definitions for elliptical curve in-
formation that is being read from secondary storage.

INITDM (SKINIT): INITDM is a subroutine with a single integer argument,
LENGTH. Its function is to initialize all of the parameters necessary to use

* the data manager package of subroutines. The argument LENGTH is the size of
the array space that the routines will dynamically manage. For a more de-
tailed description of the data management package, see Appendix C.

INNPUT (SKINNPUT): Subroutine INNPUT has no calling arguments. It is
utilized when reading object descriptions from secondary storage. This rou-

*tine requires some level of user interaction, the amount of which depends on
the number of objects being input and the complexity of the information read.

INQUC (SKINQUC): INQUC is a subroutine with no calling arguments. It
is used to complete the curve and matrix definitions for quadratic curve in-
formation that is being read from secondary storage.

INSRTL (SKINSRTL): This routine inserts 2-D lines into appropriate line
tables.

INSRTP (SKINSRTP): This routine inserts 2-D points into appropriate co-
ordinate tables.

IN3DPT (SKIN3DPT): The routine inserts 3-D points into 3-D coordinate
tables.

IOCHSZ (SKDRVR1): IOCHSZ is an input/output (I/O) routine that has a
single integer calling argument, I. The value of I invokes a series of con-
trol characters to be sent out, resulting in a change in the size of the
hardware-generated characters being displayed on the screen.

IOGET (SKDRVR1): IOGET is an I/O routine that has three integer-valued
calling arguments: IST, NCASK, and NCREC. IST and NCASK are the number of
characters actually read and the number of characters requested, while NCREC
is the number of records actually input.

IOINIT (SKDRVR1): IOINIT is an I/0 routine that has no calling argu-
ments. It sets the limits on the scrolling area of SKETCH and initializes the
required counters and parameters.

IONEXT (SKDRVR1): IONEXT is an I/O routine that has a single integer
calling argument, I. This routine manages the scrolling area of the SKETCH
display. The value of I is the number of lines requested to determine whether
the command will fit in the scrolling area.

IOSET (SKDRVR1): IOSET is an I/O routine that has six integer-valued
calling arguments: IRS, IRST, ICS, ICW, IIN, and lOT. Its purpose is to al-
low the scrolling area limits to be manipulated.

B4

i~. *

IOTOP (SKDRVR1): IOTOP is an I/O routine that has no arguments. It
erases the screen and redisplays the active information whenever the routine
is called. This occurs when the scrolling area becomes full, when a special
set of commands requiring a change in the menu is issued, or when the erase
command is given.

IOWRT (SKDRVR1): IOWRT is an I/O routine that contains two integer ar-
guments, ISTR and NCHR. It manages the printing of messages, ensuring that
the message is contained within the margins of the scrolling area. ISTR con-
tains the message to be printed, and NCHR contains the number of characters in
the message.

IPUTLN (SKIPUTLN): This routine is called by INNPUT to place line in-
formation into appropriate line tables.

IPUTPT (SKIPUTPT): This routine is called by INNPUT to place 2-D and
3-D coordinate information into appropriate coordinate tables.

IRENAM (SKINNPUT): IRENAM is a subroutine used when reading objects
from secondary storage. It helps maintain the naming convention requirements
by renaming an object from " " to "NONAME" (see SKETCH User's Manual).
The single integer argument is used to pass an address to the INNPUT routine.

KVAL (SKDETPNS): KVAL is a function subprogram which returns an integer
value from one to three to subroutine DETPNS. The integer value indicates
that DETPNS is working with X, Y, or Z dimensioning planes, respectively.

LASCHR (SKLSUCMD): LASCHR is a function subprogram with a single inte-
ger argument, NEXT. It is part of the command preprocessor package and is
used to locate the position of the last character in a command sequence.

LIST (SKLIST): The LIST subroutine has no calling arguments but uti-
lizes the labeled common areas CMD and EDSTAT. LIST interprets the command

*1 string to determine what object information is to be listed (coordinates,
lines, faces, etc.) and writes the information on the screen.

LISTOB (SKLIST): LISTOB has a single integer argument, IFACE, which is
a flag noting whether or not an object's face information is to be printed.
LISTOB is to LIST as DISOBJ is to DISPLY. It handles the actual listing of
the object information.

LOCCL (SKLOCCL): LOCCL locates the closest line in the appropriate line
table to the user-supplied position of input cross hairs.

LOCLN (SKLOCLN): LOCLN locates the line in the appropriate line table
corresponding to two coordinate indices.

LOCPT (SKLOCPT): LOCPT locates the closest point within a tolerance in
. the appropriate coordinate table to the user-supplied position of input cross
°' hairs.

LSUCMD (SKLSUCMD): The LSUCMD subroutine has no calling arguments but
makes extensive use of the labeled common areas CMD and QSTUFF. It functions
as the command preprocessor for the SKETCH routines. For more details on the
command preprocessor package, see Appendix D.

MASK (SKDRVR1): The subroutine MASK is a part of the command preproces-
sor package. It has four integer arguments (NWORD, NCHR, TO, and MAXCHR) and
is used to selectively extract words or portions of words from a command
string.

B5

MERGE (SKMERGE): MERGE is a utility subroutine with two integer argu-
ments, KILFLG and ENPTNM. It enables the user to combine the coordinate,
line, and curve information contained in two or three different objects. The
arguments are used when MERGE is called from the INNPUT routine or in the
event that the user wishes to delete the objects that combine to produce the
single definition. The merge is accomplished by first making a copy of all of
the coordinate tables since the remaining information is based on this con-
struct. Next, the line and curve table elements are processed individually.
All redundant information is eliminated.

MODIFY (SKMODIFY): The MODIFY subroutine has no calling arguments. It
is a major subroutine that processes the graphical input of sketched
information.

MOVE (SKUTIL): MOVE is a subroutine with two real arrays, A and B, as
calling arguments. The routine moves the 3 x 3 array A into the 4 x 4 array B
with the first three elements in the fourth row and column being zero. B(4,4)
=1.0.

MOVEDN (SKDRVRI): Subroutine MOVEDN is part of the data management
package. It has three arguments: A, B, and L. MOVEDN is used to transfer
blocks of the free array to a different location. For more details, refer to
Appendix C.

MMULT (SKUTIL): MMULT is a utility routine for multiplying two N x N
matrices in the argument list, A and B. The results are returned in the N X N
matrix C. The fourth argument is N, the dimension of the matrices.

MXMUP (SKDRVRl): MXMUP is a utility routine for multiplying a 1 X 3
vector, A, with a 4 x 4 matrix, B. The resulting 1 x 3 vector is stored in C.

MXMUP4 (SKDRVR1): MXMUP4 is a utility routine for multiplying a 2 X 4
vector, A, with a 4 x 4 matrix, B. The required information is stored in a
1 x 3 vector, C.

NADD (SKDRVR1): The NADD function subprogram is part of the data man-
agement package. It is used to dynamically allocate a portion of the data ai
ray to a specific object or construct. For more details, refer to Appendix C.

NDELETE (SKDRVR1): Function subprogram NDELETE is part of the data man-

agement package. It is used to dynamically eliminate information from the
data array when that information is no longer needed. For more details, refer
to Appendix C.

NEXEXL (SKEXTLIN): NEXEXL determines the next extension line to be con-
sidered by EXTLIN.

NEXCHR (SKLSUCMD): NEXCHR is a function subprogram with one integer
argument, I. It is part of the command preprocessor package and is used to
locate nonblank characters in a command string.

NFIND (SKDRVR1): Function subprogram NFIND is part of the data manage-
ment package. It is used to locate information and addresses stored in the
data array. For more details, refer to Appendix C.

NFINDO (SKDRVR1): Function subprogram NFINDO is similar to NFIND but
restricts its search to a specific OBJLCT DEFINITION. For more details, refer
to Appendix C.

NLIST (SKDRVR1): Function NLIST is part of the data management package.

B6

...

It is used to find and return the names and other pertinent information con-
cerning the constructs. For more details, refer to Appendix C.

NLOAD (SKDRVR1): NLOAD is a function subprogram with three arguments:
Al, AJ, and AK. It is used to move the first six characters in AJ plus two
characters stored in AK and place them in AI.

NHOVCR (SKDRVRI): NHOVCR is part of the data management package. It is
used to move a range of columns or rows when reformatting or deleting parts of
arrays. For more details, refer to Appendix C.

NORM (SKUTIL): This subroutine has four real arrays as arguments. The
.: plane containing the points PT1, PT2, and PT3 is calculated. The vector nor-
- mal to the plane is computed and returned in the fourth array in the argument
* list.

NORMAL (SKFACGEN): NORMAL calculates the normal to a plane formed by
three points in three space.

NREHAP (SKDRVRI): Subroutine NREMAP is part of the data management
package. It is used to reformat an array A into array B (A(M,L) = B(N,L))
where the value of N is greater than that of M. For more details, refer to

* Appendix C.

NRENAM (SKDRVR1): Subroutine NRENAM is part of the data management
package. It is used to change a construct name from 'OLDNAM' to 'NEWNAM' in
the data management header information. For more details, refer to Appendix C.

NSERCH (SKDRVRI): Subroutine NSERCH is part of the data management
package. It sets the range of values searched by the NLIST function. The
routine resets the use flags for those constructs within the search range.
For more details, see Appendix C.

NUMTES (SKLSUCD): NUNTES is a function subprogram with a single inte-
ger argument. It is part of the command preprocessor package and is used to
locate numbers inside a command string.

PARCUB (SKPARCUB): This subroutine is used in defining parametric qua-
dratic curves and modified Overhauser cubic curves. The required information
is obtained interactively from the keyboard for both types of curves. It han-
dles the initial display of each curve and adds proper curve and matrix table
entries to retain the curve definitions.

PLNTES (SKDETPNS): PLNTES determines all of the points in the current
dimensioning plane.

RENAME (SKLIST): This subroutine is used to replace all references of
'OLDNAM' with 'NEWNAM' in the SKETCH object definitions.

RESET (SKDETPNS): RESET interchanges high reference plane values with

low values in the process of determining dimensioning planes.

REVERS (SKFACGEN): REVERS reverses the current ordering of points in
the active polygon or f-ce.

SAVE (SKSAVE): This subroutine is utilized to save to secondary storage
all information necessary to define an object or objects that have been pre-
viously defined.

SAVOB (SSAVE): This subroutine is called by subroutine SAVE to r-icord
on secondary storage all necessary information to completely define an object.

B7

,.o -. - . .'* *.4 .. - . . . - . .-. : . . . , . . -'. . . .- -- ' - - - -o ' .-
k " - - ' . _ -

SCLHUP (SKUTIL): This subroutine has a scalar (A) and two vectors (B,C)

as arguments. Vector B is scaled by A, and the results are returned in C.

SDIST (SKEXTLIN): SDIST calculates the 2-D distance between two points.

SETPLS (SKDETPNS): SETPLNS determines the number of dimensioning planes
in a given direction and establishes the points contained in each plane.

SET4RD (SKINNPUT): This subroutine has a construct name and type as
arguments. It checks to see if the specified construct exists in the header
information; if not it creates an entry.

SHOW (SKFACGEN): This subroutine is used with the face generation rou-
tines. It traces on the screen the line segments that define a face.

SKDUMP (SKLIST): SKDUHP allows internal data in labeled common blocks
to be inspected for debugging purposes.

SKINIT (SKINIT): This subroutine initializes all system variables and
constants when the program execution begins.

STRP22 (SKMERGE): This subroutine has two integer arguments, FROM and
TO. It takes the last two characters of 'FROM' and concatenates them onto the
end of 'TO'.

STRP23 (SKINNPUT): Same as STRP22.

UNIT (SKUTIL): This subroutine has a single argument, a real vector A.
The vector A is normalized and returned.

UNMARK (SKFACGEN): This routine sets the line numbers in the appropri-
ate line table to positive values.

UNPACK (SKDRVR1): This subroutine has one integer (NC) and two integer
array (IIN and IOUT) arguments. NC elements of the 1-byte array INN are cop-
ied into the 2-byte array IOUT.

UPDTLI (SKUPDTL1): UPDTL1 does garbage collection for the appropriate
line table during the sketching process.

UPDTL2 (SKUPDTL2): UPDTL2 does works complementary to that done by
UPDTL1 with line tables.

VCTADD (SKUTIL): This subroutine has three real vectors as arguments:
•. A, B, and C. A and B are added, and the result is returned in C.

VCTSUB (SKUTIL): This subroutine has three real vectors as arguments:
A, B, and C. B is subtracted from A, and the result is returned in C.

.oB

i
B8

Table Bi

Subprogram/File Index

ACOS, SKELLIPI
ADEIN SKDRVR1
ADEOUT SKDRVR1
ARC SKARC
BCOS SKINELL
CENUHB SKDRVR1
CENSTR SKDRVR1
CKRTLF SKCKRTLF

CHDSET SMODIFY
CNTRPT SKDRVR1
CRELIN SKEXTLIN
CROSS SKUTIL
CURFIN SKDRVR1
DAXES SKDMENJ
DROX SKDMENJ
DELETE SKLIST
DELCOR SKDEL4CR
DEL4CR SKDEL4CR
DEL4EL SKDEL4EL
DETPNS SKDEPTNS
DFAXES SKDFAXES
DIlIENS SKDIMENS
DISJNT SKDRVR1
DISPLY SKDRVRI
DISOBJ SKDISOBJ
DIST SKDRVR1
DIST3D) SKUTIL
DMENU SKHENU
DOT SKELLIP
DOTPRO SKEXTLIN
DRVER2 SKDRVER2
ELLIP SKELLIP
ERROR SKLIST
EX'TLIN SKEXTLIN
FACGEN SKFACGEN
GCSWIIR SKDRVR1
IDLSH SKLSUCMD
IMLES SKLSUCMD
ILSQT SKLSUCHD
INARC SKINARC
INELL SKINELL
INITDM SKINIT
INNPUT SKINNPUT
INQUC SKINQUC
INSRTL SKINSRTL
INSRTP SKINSRTP
IN3DPT SKIN3DPT
IOCHSZ SKDRVR1

(Continued)

Table Bi (Continued)

IOGET SKDRVR1
IOINIT SKINIT
IONEXT SKDRVR1
IOSET S1KDRVR1
IOTOP SKDRVR1
IOWRT SKDRVR1
IPUTLN SKIPUTLN
IPUTPT SKI PUTPT
IRENAM SKINIIPUT
UVAL SKDETPNS
LASCHR SKLSUCMD
LIST SKLIST
LISTOBJ SKLIST
LOCCL SKLOCCL
LOCLN SKLOCLN
LOUPT SKLOCPT
LSUCMD SKLSUCMD
MASK SXDRVR1
MERGE SKMERGE
MODIFY SKMODIFY
MOVE SKMODIFY
MOVE SKUTIL
MOVEDN SKDRVR1
MHULT SKUTIL
NXHUP SKDRVR1
MXMUP4 SKDR
NADD SKDRVR1
NDELETE SKDRVR1
NEXEL SKEXTLIN
NEXCHR SKLSUCMD
NFIND SKDRVR1
NFINDO SKDRVR1
NLOAD SKDRVR1
NLIST SKDRVR1
NMOVCR SKDRVR1
NORM SKUTIL
NORMAL SKFACGEN

*NREMAP SKDRVR
NRENAM SKDRVR1
NSERCH SKDRVR1
NUNTES SKLSUCMD
PARCUB SKPARCUB
PLNTES SKDETPNS
RENAME SKLIST
RESET SKDETPNS
REVERS, SICFACGEN
SAVE SKSAVE

*SAVEOB SKSAVE
SCLMUP SKUTIL

(Continued)

B 10

Table Bi (Concluded)

MDIST SKEXTLIN
SETPLS SKDETPNS
SET4RD SKINNPUT
SHOW SKFACGEN
SHOWTB SKDEL4CR
SKDUMP SKLIST
SKINIT SKINIT
STRP22 SKHERGE
STRP23 SKINNPUT
UNIT SKUTIL
UNMARK SKFACGEN
UNPACK SKDRVR1
UPDTLI SKUPDTL1
UPDTL2 SKUPDTL2
VCTADD SKUTIL
VCTSUB SKUTIL

Ell

APPENDIX C: IN-CORE DATA MANAGEMENT SYSTEM

General Information

The data management system consists of a collection of subroutines used

for the generation and handling of geometry related constructs in a dynamic

environment. The construct is a collection of data which can be dynamically

created, expanded, or deleted.

The application programmer provides space for the data in a common block

named 'FREE' and initializes the system by specifying the length of this block

(see subroutine INITDM). The programmer now has the capabilities to create

new constructs or add space to existing ones (function NADD); find an existing

- construct and retrieve information about it (function NFIND); delete all or

*part of an existing construct (function NDELET); and receive a series of con-

struct names and information about specific classes of constructs (function

.* NLIST and subroutine NSERCH).

The concept of an address associated with each construct will be used

throughout the description of the system. The address referred to is actually

the dimension of the element in the common block 'FREE' where the data asso-

ciated with the construct are located. Assume the following statement has

been executed:

*'i COMION/FREE/ CORE(2000)

LOC = NFIND (ANANE , KLASS , ND1 , ND2)

The returned value of LOC is equal to 100. The data of the construct ANAME

would start at CORE(100) and follow contiguously. See "Internal Construct

Structure" (page C7) for more information on internal data format and storage.

Care must be taken when using the value returned as the location. Val-

ues of 0 or -1 are returned as error conditions from some routines and would

be invalid as an index.

Constructs are defined by four variables: name (ANAME), class (KLASS),

and two dimensions (ND1 and ND2). If ANAME is a variable, it must be at least

8 bytes (characters) in length. This can be accomplished in various ways:

BYTE ANAME(8), LOGICAL*1 ANAME(8), INTEGER*2 ANAME(4), REAL*4 ANAME(2),

C1

REAL*8 ANAME. KLASS, NDI, and ND2 are standard integer variables. The vari-

able ANAME contains the programmer provided construct name of 1-8 ASCII char-

acters. Care should be taken to ensure that all references to ANAME are con-

sistent in justification and padding. Left-justified and blank padding are

preferred. Below are examples of correct and incorrect methods of ANAHE

usage:

Correct:

1) REAL * 8 ANAME/'OBJO1 'I

LOC = NFIND (ANAME

2) LOC = NFIND ('OBJOI

3) REAL * 8 ANAME
READ(5,1) ANAME

1 FORMAT(A8)
LOC = NFIND (ANAME

(NOTE: FORTRAN READ stores ASCII left-justified and blank-filled.)

Incorrect:

1) LOC = NFIND ('OBJ01'

Names are stored within the system headers exactly as provided and re-

turned exactly as they are stored. If the same name is used later and is not

consistent with the original, the original will not be located.

The variable KLASS allows the programmer to classify each construct or

group of constructs according to their type or function. KLASS must be an in-

teger greater than zero and need not be unique for each construct. For ex-

ample, a programmer may define all vectors with values between 50 and 59.

KILASS 51 may be reserved for vectors that are node points, KLASS 52 for coor-

dinate vectors, etc.

In this way, the programmer subdivides his construct definitions numeri-

cally and later finds constructs by KLASS range (see function NLIST).

The dimension variables ND1 and ND2 are provided by the programer to

C2

. .

define the amount of space and the format desired for a construct. These are

analogous to FORTRAN pseudodimensioning; i.e.,

ARRAY(NDI , ND2) for an array

CVECT(ND1 , 1) for a column vector

RVECT(I , ND2) for a row vector

SCALR(I , 1) for a scalar value

For more information about these varibles and restrictions for use, see the

individual subroutine explanations.

The application programmer should remain aware of two conditions that

exist within the operation of this system. First, allocated space is not

guaranteed to be zero-filled. The programmer must take care to fill all data

locations with a desired value. Second, the starting address of the data as-

sociated with a construct will not remain constant. Addition and deletion of

- space in a construct may result in the movement of data related to other con-

structs. An NFIND should be executed to find the new starting address of any

construct before it is used. See "Internal Construct Structure" (page C7) for

more information about data movement resulting from addition and deletion.

Description of Construct Handling Routines

INITDM

Subroutine INITDH(LENGTH)

This subroutine is called to initialize the data management system.

INITDM initializes internal variables which the other routines require and

must be the first data management system routine called. The input argument

LENGTH is used to specify the length in words of the common block 'FREE' which

should be defined in the user's calling program.

COMHONIFREEl CORE(2000)

*CALL INITDM(2000)

,1 C3

.4

%44

The entire system can be restarted at any time by calling INITDM again.

Note that when restarting there are no longer any constructs in core and all

space is available for use.

NADD

Function NADD(ANAME, KLASS, ND1, ND2)

The function NADD is used to create a new construct or add space to an

existing construct.

The internal headers are searched to see if the construct ANAME exists.

If it does not already exist, a new one is created using the information spec-

ified in the arguments KLASS, ND1, and ND2. These may be integer constants or

variables. The function value returns the starting address of the new con-

struct.

If the construct already exist, its dimensions are modified by the val-

ues ND1 and ND2. In this case, ND1 and ND2 become the change in dimension and

may take on positive, zero, or negative values. (NOTE: The programmer should

NOT use negative values to remove space; use function NDELET instead. NADD

will not check to see if too much space is removed.)

Zero is valid when the programmer wishes to change one dimension only.

To make the column vector larger or matrix column longer, NDI ND2 typically

would be NCHANG, 0. This is also true for width changes 0, NCHANG. Values of

0, 0 can be used when changing KLASS values since it is updated each time NADD

is called.

Automatic remapping of data occurs when the column length of an array

changes. This ensures that the data appear in the same format within the new

space. See "Internal Construct Structure" (page C7) for more information.

If no space in 'FREE' is available to create or expand a construct, the

function returns the value of -1. If the request is successful, the starting

address of the construct is returned.

NFIND

Function NFIND(ANAME, KLASS, ND1, ND2)

C4

;~~~~ ~~~~~..- ..'... .. .-........-......-..... . .. -.... ,- ..- . . - -.-.

The function NFIND searches the internal headers for a construct ANAME.

*. If found, the values of KLASS, NDI, and ND2 are returned, and the function

value returns the starting address of the construct. If the construct is not

found, zero is returned for variables KLASS, NDl, and ND2 and the function

value.

NDELET

-;: Function NDELET(ANAME, NIF, NIL, N2F, N2L)

The function NDELET is used to delete all or part of the data in a con-

struct. Deleting all of the data in a construct in effect causes the deletion

*of the construct itself.

The variables NIF, NIL, N2F, and N2L are used to specify the range of

-deletion. NIF to NIL specifies the first to last column vector elements or

array row numbers. N2F to N2L specifies the first to last row vector elements

or array column numbers.

The following restrictions must be observed when specifying deletion

ranges:

N1F NIL

N2F N2L

NIL NDI

N2L ND2

If these restrictions are not observed, the function will return the error

value of -1. A range value or 0 has multiple functions depending on its use.

If NIF = NIL = 0, then no deletion will occur in that range. The same is

true for N2F = N2L = 0. If NIF is assigned a value and NIL = 0, then only the

NIF element or row is deleted; this is equivalent to specifying NIF = NIL. If

* NiF = NIL = N2F = N2L = 0, the whole construct is deleted; this is equivalent

to specifying NIF = N2F = 1, NIL = NDI, N2L = ND2. The preferred method of

deleting an entire construct is to specify all zeros for the range. This will

result in the function returning 0 as its value. If the specification of a

range results in the deletion of the entire construct, the function returns +1

as its value.

C5

I-.--.-.-. -.. --. .-=....-...... . •... . ..-.. -.-..-... .:.. .. .,

.At as the addition of space causes internal reformatting of data, de-

letion also does. See "Internal Construct Structure" (page C7) for more

information.

NRENAM

Function NRENAM(OLDNAM, NEWNAM, KLASS, ND1, ND2)

The function subprogram NRENAM allows the user to change the label por-

tion of the data in a header from 'OLDNAM' to 'NEWNAM'.

The internal headers are searched to see if 'NEWNAM' is being used. If

it does already exist, then NRENAM returns with a value of -1. If not lo-

cated, a search of the headers for 'OLDNAM' is initiated.

When 'OLDNAM' is located, it is replaced with 'NEWNAM'; the variables

KLASS, ND1, and ND2 are set to the corresponding values found with the 'OLDNAM'

construct; and NRENAM is set equal to the starting address of the construct.

NSERCH and NLIST

Subroutine NSERCH(IKLS1, IKLS2)

Function NLIST(ANAHE, KLASS, ND1, ND2, IUSE)

NSERCH and NLIST allow the programmer to determine the name and other

information about all constructs whose KLASS values lie within a specified

range. The purpose of subroutine NSERCH is to define the range of KLASS val-

ues: IKLS1 to IKLS2. The default range at system initialization is 999 to

999. Calling NSERCH also clears the internal access count in the header of

all constructs that are within the range IKLS1 to IKLS2. More information

about this count is described below with variable IUSE. The value of IKLS1

need not be less than IKLS2; the program will check for any construct KLASS

between IKLS1 and IKLS2.

The purpose of function NLIST is to return the starting address, name,

class, dimensions, and use count for each construct within the search range.

The function value returns the starting address, and other information is re-

turned through the arguments. After calling NSERCH to specify a search range,

NLIST is called repeatedly until a function value of 0 is returned. Zero sig-

nifies that the entire contents of the common block 'FREE' have been searched

C6

..-. ".....

and no more constructs with KLASS must be called again to reinitialize the

search pointers and range before NLIST can find any constructs.

The following example illustrates the procedure:

, C.. GET INFO ABOUT CONSTRUCTS KLASS = (20,40)
CALL NSERCH(20, 40)

100 LOC = NLIST(ANAME, KLASS, ND1, ND2, IUSE)
IF(LOC .EQ .0) GO TO 200

" C.. PROCESS INFORMATION

GO TO 100
C.. DONE, SET NEW RANGE
200 CALL NSERCH(10, 5)

The internal access count flag for a construct is incremented each time

NLIST references that construct. The value returned through IUSE is before

the increment is done; thus, a nonzero value signals the programmer that this

information has already been received.

Utility Routines NMOVCR, NMVBLK, and NREMAP

These three subroutines are utility subroutines used by the system to

move rows and columns within an array, to move blocks of memory in 'FREE', and

to reformat arrays.

Internal Construct Structure

Each construct is made up of two parts: headers and data space. The

data space is the section of memory where the programmer's data actually exist.

The headers are blocks of memory used to keep tract of the information related

to each construct and its data. The data and headers for each construct are

maintained by this system within the user-provided common block 'FREE'. Fig-

ure C1 shows a diagram of the typical common block structure. Location 1 is

considered to be the "bottom," and location LENGTH is the "top" of the common

block. The data spaces are allocated from the bottom in variable lengths

C7

. ..: :.:...:.-.-... . ,,
I ' illili i l~.SSJ * lll. *S . "- " . *.

. . . -. o... °o °o .

L" N1 Headers expand
downward

. #3 1NV2
NDI

[START
LENTOT

LST1EA KLASS
NAME (char 6-
NAME (cha 1-41

Header Contents

-"-Construct

Data
NWXFE - - -- - - - 0* #4

0 dM -~ - - f.

#2

1Data expand
upward

Figure Cl. Example of DATHNG common block structure showing
headers and data of four constructs

expanding upward. The headers are allocated from the top in fixed lengths ex-
" panding downward.

The insert in Figure Cl shows the contents of each header. Seven words

of memory are used to store the following information:

CS

--J- .

2 words for the constructs name - ANAME

1 word for the class value - KLASS

1 word for the starting address of the data - ISTART

2 words for the two dimensions - ND1 and ND2

* 4

Addition of Space to a Construct

The addition of space to a construct results in the upward movement of

the data above it. This provides a "hole" in memory for the new data to be

placed. Figure C2 illustrates this concept. The ISTART variables in the

headers for the constructs that are moved are updated to account for the

*~4.4
" 4

I daata

space

;, ;,

COMMON blok *FREE* before (f t)t d
after (rlght) addition of data space

to censtruct 02.
Figure C2. Example showing addition of data space

to a construct

C9

- - h dmnglilm ; ., am Jd m~t '-*'" J-"L.I, .a~m . - ,..aj, , ,, ,

movement of these data. The addition of space to a construct does not result

in the movement of that particular construct because space is always allocated

at the end of the existing data. Note that the creation of a new construct

causes space to be allocated at the end and causes no movement of data.

Deletion of Space from a Construct

The deletion of space has the opposite effect from that described above.

The data of the constructs above the space to be deleted are moved down over

that space (see Figure C3). Again, the ISTART variable in the headers of the

#3TW# ea~ a- jw P over

LSTI.EA #
ow ____ __

LSTIEA

3) The OWN*"e DfVSee StOred
h ftodwe 03 4 e4 ae WpOWe
werig tO the noWt tNer

NXTFRE#4 SvW f de o t 0metruo 9.

Now

WrMd------ - -nnnnnnnnnn

Figure C3. Example of DATMNG commson block during
construct deletion

CIO

moved constructs is updated to contain the new addresses of their data. If an

entire construct is deleted, its header is deleted by moving the headers below
it upward (Figure C3). As with addition, deletion of space does not result in

the movement of the construct being acted upon.

Reformatting of Arrays

When space is added to an array by changing the column length, the con-

tents of the array must be reformatted. This guarantees that any element of

an array, A.., will remain in that position when accessed under the new

dimensions.

Figure C4 shows the operation of changing a 3 x 3 array to a 4 x 3 array

* as its contents appear to a typical programmer. After the addition of space,

the elements from A 12downward are no longer in the correct location within a

4 X 3 array format. The contents of locations A 12through A 33must be moved

to their new locations as shown by the arrays in Figure C4.

S.1

L

Initial 3X3 Resultant 4X3
A rray Array

-.' _A 43

- _ _ _ A 33

______A 23

A33 A, 3

A23 A42
A,3 A32

SAv. An

A 22 A___2
- A,2 A,___

A12 A41

A3, -A

A,, A 21A_

Figure C4. Reformatting of DATHNG arrays

C12

+ :, W '*.' ,'' :.?. 7 . --.. :,. .. ., x .-. • - *. .:

APPENDIX D: COMMAND PREPROCESSOR LSUCMD

APPLICATION PROGRAMMER'S GUIDE

LSUCMD is a FORTRAN subroutine which accepts a command string input by

the user and changes it to a compact usable form. Words and numbers of a user

command are identified and reformatted such that flexible command interpreters

can be quickly constructed by an application programmer. Information is

passed back to the calling program through the use of a common block called

CMD.

LSUCMD checks the command string for syntax errors such as multiple dec-

imal points, an imbedded character, or a misplaced hyphen in a number. These

features allow user errors without producing catastrophic results.

The command preprocessor will return to the calling program after every

word (up to 32 characters) of the command string in a packed format. All in-

teger and real numbers are returned in floating point format along with the

words in a single array (ALPNU). The data are identified through the use of

the ICODE array and positioned in accordance with the IPOS array (see the de-

tailed description of variables).

The command preprocessor is called as follows:

CALL LSUCHD

There are no arguments as all information is passed back through the

common block CMD. The comon block CMD used to pass information to the user

must be included at the top of the user's program. The common statement

should read:

COMMON/CMD/ALPUT(40) ,ICODE (40),NWDS,NOS

CALL CMDSET (MAXWDS,MAXNOS)

The maximum number of words and the maximum number of numbers are rede-

fined by positive values, including zero, of MAXWDS and MAXNOS, respectively.

Negative values of MAXWDS or MAXNOS cause the previous value to be retained.

As mentioned previously, subroutine LSUCMD accepts up to 32 characters

for each command word typed by the program user. However, the application

programmer may wish to recognize only the first few characters of a given

ID1

word, thus providing a more flexible and less restrictive environment for the

user. Subroutine MASK allows the application programmer to extract the spe-

cific number of characters he requires for a particular word. The call to

MASK is as follows:

SUBROUTINE MASK (NWORD, NC, TO, NB)

The variables in the argument list are as follows:

NWORD - position of the word in the command string

NC - number of characters to be extracted from the indicated
word

TO - name of the variable or array in which the extracted char-
acters are placed, 1 character per byte. The user should
be certain that this word is large enough to handle NC
characters

NB -the maximum number of characters the variable or array TO
can hold. Any unused bytes in TO are filled with blank
characters

These variables in CMD are utilized as follows:

ALPNU(40) - alphanumeric array that contains up to 32 characters of
every word in the command string packed 4 characters per

4-byte word. It also contains, in real number format, all
numbers in the command string. If an integer number is
required, the real number must be converted to an integer
in the application program

ICODE(40) - array that denotes the type of information contained in
ALPNU(40). If ICODE(n) is positive, it indicates that a

th
word was found at the n position in the command string.
The value of ICODE(n) denotes the number of characters
found in that word. The maximum number of characters per
word is 32; any more will be ignored. If ICODE(n) is a

thnegative one (-1), a number was found at the n position

in the command string. Allowable delimiters between words
or numbers are a blank, a coma, or an equal sign

IPOS(40) - array that denotes the position in the ALPNU(40) array of
the beginning of a word or a number from the command
string. The IPOS(40) and ICODE(40) arrays correspond to
each other in a one-to-one relationship. For instance, if
ICODE(2) is a positive five and IPOS(2) is three, this in-
dicates that the second word or number in the command

D2

string is a word with 5 characters and the first 4 char-
acters are located in ALPNU(3) and the last character
followed by 3 blanks is located in ALPNU(4)

NWDS - integer *2 variable - denotes the number of words found in
the command string

NOS - integer *2 variable - denotes the number of numbers found
in the command string

An initialization routine called CMDINT must be called by the user prior

to calling LSUCMD. This routine contains no arguments. It defines the maxi-

mum number of words and the maximum number of numbers per command string to be

20 each. If the user wishes to change these limits, he may do so by calling

CMDSET.

o'*D

.1

.o

b4,
'

'S'

•D3

" -,r,' ..'-,;:, - .4 ':, ',..." :,", , %" .." .. '% ,,.'., .-... "...' .'. . .' ..,
S. - . -. .'

APPENDIX E: ERROR MESSAGES

Error No. Description of Error

0 Initialized value; no errors in execution

101 Coordinate table for the specified object does not exist

102 Line table for the specified object does not exist

103 Internal conflict with KLASS of the coordinate table; i.e., KLASS
does not equal 21

104 Internal conflict with KLASS of the line table; i.e., KLASS does
not equal 22

105 Internal conflict with KLASS of dimensioning information; i.e.,
extension line type does not match the dimension table type.
Also, in curve routines, cannot find curve table for specified
object

106 Trouble with deleting data contained in face information

110 Object specified does not exist

111 Invalid object KLASS; not equal to 50

112 No active objects in display list

113 In CVTDIM, could not change object KLASS to 52; i.e., could not

change object from two- or three-dimensional

114 Invalid object KLASS; not equal to 50 or 52

-j 121 Coordinate table for object specified does not e zst in the ob-
ject definition

122 Line table for the object specified does not exist in the object
definition

131 Extension line coordinate table for the object specified does not

exist in the object definition

132 Extension line table for the object specified does not exist in
the object definition

191 Syntax error in the use of the MERGE command

192 Improper use of the word INTO in the MERGE command

200 Not enough memory in the FREE array to allow full processing of
the command

201 Data have been shifted after an NADD and pointer have not been
reset

202 Location of face table problems

203 No room to add face information

204 No room to add segment to current face definition

(Continued)

El

, ,.,.................... -,.,... .. ,-...., ..:-...,......-..-,..--........ . -. '..-. .-,--. ,:.--.-.

Error No. Description of Error

300 Calculation error; division by zero avoided and 0 value returned,
or the distance between two points is zero

395 Could not find plane No. 1 in first portion of a string in dimen-
sioning information

396 Trouble matching values
397 Trouble searching dimensioning information

398 Trouble searching dimensioning information; the number of dimen-

sioning planes is 0

399 Coordinate table does not have 5 or 8 units per coordinate

400 Trouble setting points in particular planes in subroutine DETPNS;
check line types

401 Trouble setting points in particular planes in subroutine DETPNS;
at least one point has not been set, possibly a free-standing

"* point; check line types

402 Dimensioning planes have not been established; cannot go on with
dimensioning procedure

403 Trouble establishing extension lines in CRELIN; also, could not
locate dimensioning tables in routine DIHENS

404 User aborted dimensioning procedure before complete specification
of information

405 Both coordinate pairs of an extension line definition are on a
boundary

406 A line type for an extension line is not properly set

407 Could not find dimensions array construct

408 Internal problem; data have not been moved correctly

409 Trouble deleting extra records in dimensioning array when con-
necting dimension strings together

410 Number of strings value in dimensioning array is bad

411 Trouble trying to rearrange the dimensioning planes according to
coordinate values

500 Could not find reference plane in any dimensioning string

501 Could not find a string with at least one point set

502 Counter LO is less than LOLIHIT

600 Improper file specification in SAVE command

700 Polygon order cannot be reversed in FACGEN logic

999 Coordinate table does not have 5 or 8 units per coordinate

E2

- -,-*, 2 ' . - .", , ' ,' , ** .- *. **'4 4 ". ." ,- .,' .",• . -• -. ". --. •- - .

WATERWAYS EXPERIMENT STATION REPORTS
PUBLISHED UNDER THE COMPUTER-AIDED

STRUCTURAL ENGINEERING (CASE) PROJECT

Title Date

Technical Report K-78-1 List of Computer Programs for Computer-Aided Structural Engineering Feb 1978

Instruction Report 0-79-2 Users Guide: Computer Program with Interactive Graphics for Mar 1979
Analysis of Plane Frame Structures (CFRAME)

Technical Report K-80-1 Survey of Bridge-Oriented Design Software Jan 1980
Technical Report K-80-2 Evaluation of Computer Programs for the Design/Analysis of Jan 1980

Highway and Railway Bridges

Instruction Report K-80-1 User's Guide: Computer Program for Design/Review of Curvi- Feb 1980
linear Conduits/Culverts (CURCON)

Instruction Report K-80-3 A Three-Dimensional Finite Element Data Edit Program Mar 1980

Instruction Report K-80-4 A Three-Dimensional Stability Analysis/Design Program (3DSAD)
Report 1: General Geometry Module Jun 1980
Report 3: General Analysis Module (CGAM) Jun 1982

Instruction Report K-80-6 Basic User's Guide: Computer Program for Design and Analysis Dec 1980
of Inverted-T Retaining Walls and Floodwalls (TWDA)

Instruction Report K-80-7 User's Reference Manual: Computer Program for Design and Dec 1980
Analysis of Inverted-T Retaining Walls and Floodwalls (TWDA)

Technical Report K-80-4 Documentation of Finite Element Analyses
Report 1: Longview Outlet Works Conduit Dec 1980
Report 2: Anchored Wall Monolith, Bay Springs Lock Dec 1980

Technical Report K-80-5 Basic Pile Group Behavior Dec 1980

Instruction Report K-81-2 User's Guide: Computer Program for Design and Analysis of Sheet
* Pile Walls by Classical Methods(CSHTWAL)

Report 1: Computational Processes Feb 1981
Report 2: Interactive Graphics Options Mar 1981

Instruction Report K-81-3 Validation Report: Computer Program for Design and Analysis of Feb 1981
Inverted-T Retaining Walls and Floodwalls (TWDA)

Instruction Report K-81-4 User's Guide: Computer Program for Design and Analysis of Mar 1981
Cast-in-Place Tunnel Linings (NEWTUN)

Instruction Report K-81-6 User's Guide: Computer Program for Optimum Nonlinear Dynamic Mar 1981
Design of Reinforced Concrete Slabs Under Blast Loading
(CBARCS)

Instruction Report K-81-7 User's Guide: Computer Program for Design or Investigation of Mar 1981
Orthogonal Culverts (CORTCUL)

Instruction Report K-81-9 User's Guide: Computer Program for Three-Dimensional Analysis Aug 1981
of Building Systems (CTABS80)

Technical Report K-81-2 Theoretical Basis for CTABS80: A Computer Program for Sep 1981
Three-Dimensional Analysis of Building Systems

Instruction Report K-82-6 User's Guide: Computer Program for Analysis of Beam-Column Jun 1982
Structures with Nonlinear Supports (CBEAMC)

Instruction Report K-82-7 User's Guide: Computer Program for Bearing Capacity Analysis Jun 1982
of Shallow Foundations (CBEAR)

Instruction Report K-83-1 User's Guide: Computer Program With Interactive Graphics for Jan 1983
Analysis of Plane Frame Structures (CFRAME)

Instruction Report K-83-2 User's Guide: Computer Program for Generation of Engineering Jun 1983
Geometry (SKETCH)

Technical Report K-83-1 Basic Pile Group Behavior Jun 1983

I

